quadrature formula

n.  求积公式

计算机



双语例句

  1. Computation of the Coefficients of Rational Lobatto Quadrature Formula
    有理Lobatto求积公式系数的计算
  2. Some Classes of homogeneous ordinary differential equations are introduced. The integrity and quadrature formula are obtained with the method of exchanging position or substitution of variables. Thus their application range is widened.
    提出几类齐次型常微分方程,通过变量替换及交换变量位置法,给出它们的可积性证明及求积公式,以达到拓宽其应用范围的目的。
  3. Optimal foam formula has been selected by quadrature experimental design method, and sensitive evaluation of the formula has been carried out;
    利用正交设计法筛选出有效的泡沫配方体系;并对泡沫体系进行了敏感性评价和泡沫分流效果预测;
  4. Then, using the second-order central difference to discretize the time derivative of the displacement, and applying the quadrature formula to the mass matrix, a fully discrete lumped mass Morley element method is developed for the same problem.
    然后利用中心差分格式离散时间方向的二阶导数,再利用适当的求积公式得到薄板弯曲问题的集中质量Morley元全离散格式。
  5. On quadrature formula of gauss 'type on r~ n
    关于R~n中的Gauss型求积公式
  6. The least square polynomial Q n ( x) is introduced, and an interpolation polynomial for function is made with its zeros as nodes, and a kind of quadrature formula for singular integrals is obtained. The Gauss type quadrature formula is its special form.
    引进最小二乘多项式簇{Qn(x)},由Qn(x)的零点出发作插值多项式,得到了奇异积分的一类求积公式,它的特殊形式为Gauss型求积公式。
  7. Application of the Generalized Difference Quotient Function in the Quadrature Formula of the Higher Order Singular Integral
    广义差商函数在高阶奇异积分求积公式中的应用
  8. In this aper, a kind of quadrature formulas are constructed by using the Euler Maclaurin summation formula.
    本文利用Euler-Maclaurin求和公式构造了一类求积公式,称为修正复合梯形公式。
  9. The problem of quadrature formula, normalization, symmetrization and peak spreading correction for experimental GPC chromatograms after partial smoothing or fitting a curve is discussed.
    最后讨论了求积公式、归一化、对称化和GPC实验谱图的峰加宽改正问题。
  10. Therefore the generalized numerical quadrature formula with the single node is deduced naturally.
    而且,由此自然地推导出单节点数值积分公式。
  11. Error margin of Cotes quadrature formula
    Cotes求积公式的误差
  12. On the Convergence of a Quadrature Formula for Cauchy Principal Value Integrals
    Cauchy主值积分求积公式的收敛性
  13. In this paper, the obvious form of Romberg's quadrature formula and the error equation is presented.
    在这里将给出Romberg求积公式的显示形式和误差等式。
  14. On rational Gauss-Lobatto quadrature formula
    有理Gauss-Lobatto求积公式
  15. The authors give a new quadrature formula and error estimates for numerical integration of functions in E~ α_s ( c) over the unit cube in s dimensions.
    给出了函数类Eαs(c)中的函数在s维单位立方体上的数值积分的新型求积公式及其误差估计。
  16. Quadrature formulas for singular integrals with Hilbert kernel in multiple nodes are established by the method of seperation of singularities and the remainder of each quadrature formula is given in terms of contour integral.
    该文用分离奇点的方法建立了含Hilbert核的奇异积分带重结点的求积公式,给出了求积公式余项的积分表示式。
  17. The best quadrature formula and its errors based on the given information with a weight function for Sobolev class KW~ r are given.
    给出了r阶Sobolev类KWr[a,b]带权函数的基于给定信息的最佳求积公式和它的误差估计式。
  18. A New Proof of the Classical Simpson Quadrature Formula
    经典SIMPSON求积公式的新证明
  19. We introduced a new and simple proof of the classical SIMPSON quadrature formula which is frequently applied in calculating definite integrals and best estimation of error is obtained.
    对于定积分近似计算中常使用的经典SIMPSON求积公式介绍一种新的简洁的证明方法并给出误差的最佳估计。
  20. A Property of Gauss Quadrature Formula
    Gauss求积公式的一个性质
  21. The Existence of Generalized Birkhoff Quadrature Formula
    广义BIRKHOFF求积公式的存在性
  22. Gauss-Laguerre Quadrature Formula with Coincident Knots
    重端点的Gauss-Laguerre求积公式
  23. Best quadrature formula for the class KW~ 2_x, which is the subclass of KW~ 2 consisting of all the functions whose derivatives vanish at the fixed nodes is presented.
    另外还给出了类KW2[a,b]中在节点的导数值为零的函数所组成的子类的相应的最佳求积公式。
  24. There are no conductions about the obvious form and the error equation of Romberg's quadrature formula in present literatures.
    现有文献并没有介绍Romberg求积公式的显示形式,没有误差等式。
  25. By using the Gauss-Chebyshev quadrature formula, the approximate numerical solutions are obtained.
    利用Gauss-Chebyshev求积公式得到了该问题的近似数值解。
  26. The fourth part will be the second and third part of the quadrature formula range complex in order to improve their accuracy and reduce errors.
    第四部分将第二和第三部分得到的求积公式进行区间内复化,以提高它们的精度,减少误差。
  27. Part II and Part III in a dimensional space, based on two dimensional space at the basic unit-Triangular and rectangular fields, the idea of incremental progress in trying to construct quadrature formula, the formula of the construction process and led to all the thinking.
    第二部分和第三部分在一维空间的基础上,分别在两个二维空间基本单元&三角域和矩形域上,采取循序渐进的思路尝试构造求积公式,并对公式的构造过程引发了种种思考。